Background: Ideal diameter for tibial interference screw fixation of the anterior cruciate ligament (ACL) graft remains controversial. Tibial graft fixation with screws matching the tunnel diameter vs. one-millimetre oversized screws were compared.
Methods: In 32 cadaveric porcine tibiae, bovine extensor tendons with a diameter of eight millimetres were fixed in (I) a primary ACL reconstruction scenario with eight-millimetre tibial tunnels (pACL), with eight-millimetre (pACL-8) vs. nine-millimetre (pACL-9) screws, and (II) a revision ACL reconstruction scenario with enlarged tunnels of 10 mm (rACL), with 10-mm (rACL-10) vs. 11-mm (rACL-11) screws. Specimens underwent cyclic loading with low and high load magnitudes followed by a load-to-failure test. Graft slippage and ultimate failure load were recorded.
Results: In comparison with matched-sized screws (pACL-8), fixation with oversized screws (pACL-9) showed with significantly increased graft slippage during cyclic loading at higher load magnitudes (1.19 ± 0.23 vs. 1.98 ± 0.67 mm; P = 0.007). There were no significant differences between the two screw sizes in the revision scenario (rACL-10 vs. rACL-11; P = 0.38). Graft fixation in the revision scenario resulted in significantly increased graft slippage in comparison with fixation in primary tunnels at higher loads (pACL vs. rACL; P = 0.004). Pull-out strengths were comparable for both scenarios and all screw sizes (P > 0.316).
Conclusions: Matched-sized interference screws provided better ACL graft fixation in comparison with an oversized screw diameter. In revision cases, the fixation strength of interference screws in enlarged tunnels was inferior to the fixation strength in primary tunnels.
Keywords: ACL reconstruction; Anterior cruciate ligament; Biomechanics; Interference screw; Oversizing; Revision ACL reconstruction.
Copyright © 2018 Elsevier B.V. All rights reserved.