Preclinical testing of anticancer therapies relies on relevant xenograft models that mimic the innate tendencies of cancer. Advantages of standard subcutaneous flank models include procedural ease and the ability to monitor tumor progression and response without invasive imaging. Such models are often inconsistent in translational clinical trials and have limited biologically relevant characteristics with low proclivity to produce metastasis, as there is a lack of a native microenvironment. In comparison, orthotopic xenograft models at native tumor sites have been shown to mimic the tumor microenvironment and replicate important disease characteristics such as distant metastatic spread. These models often require tedious surgical procedures with prolonged anesthetic time and recovery periods. To address this, cancer researchers have recently utilized ultrasound-guided injection techniques to establish cancer xenograft models for preclinical experiments, which allows for rapid and reliable establishment of tissue-directed murine models. Ultrasound visualization also provides a noninvasive method for longitudinal assessment of tumor engraftment and growth. Here, we describe the method for ultrasound-guided injection of cancer cells, utilizing the adrenal gland for NB and renal sub capsule for ES. This minimally invasive approach overcomes tedious open surgery implantation of cancer cells in tissue-specific locations for growth and metastasis, and abates morbid recovery periods. We describe the utilization of both established cell lines and patient derived cell lines for orthotopic injection. Pre-made commercial kits are available for tumor dissociation and luciferase tagging of cells. Injection of cell suspension using image-guidance provides a minimally invasive and reproducible platform for the creation of preclinical models. This method is utilized to create reliable preclinical models for other cancers such as bladder, liver and pancreas exemplifying its untapped potential for numerous cancer models.