Super-resolution CT Image Reconstruction Based on Dictionary Learning and Sparse Representation

Sci Rep. 2018 Jun 11;8(1):8799. doi: 10.1038/s41598-018-27261-z.

Abstract

In this paper, a single-computed tomography (CT) image super-resolution (SR) reconstruction scheme is proposed. This SR reconstruction scheme is based on sparse representation theory and dictionary learning of low- and high-resolution image patch pairs to improve the poor quality of low-resolution CT images obtained in clinical practice using low-dose CT technology. The proposed strategy is based on the idea that image patches can be well represented by sparse coding of elements from an overcomplete dictionary. To obtain similarity of the sparse representations, two dictionaries of low- and high-resolution image patches are jointly trained. Then, sparse representation coefficients extracted from the low-resolution input patches are used to reconstruct the high-resolution output. Sparse representation is used such that the trained dictionary pair can reduce computational costs. Combined with several appropriate iteration operations, the reconstructed high-resolution image can attain better image quality. The effectiveness of the proposed method is demonstrated using both clinical CT data and simulation image data. Image quality evaluation indexes (root mean squared error (RMSE) and peak signal-to-noise ratio (PSNR)) indicate that the proposed method can effectively improve the resolution of a single CT image.

Publication types

  • Research Support, Non-U.S. Gov't