Tumor heterogeneity and drug resistance pose severe limitations to chemotherapy of colorectal cancers (CRCs) necessitating innovative approaches to trigger multiple cytocidal events for increased efficacy. Here, we developed a hybrid drug called KSS19 by combining the COX-2 selective NSAID rofecoxib with the cis-stilbene found in combretastatin A4 (CA4), a problematic, but potent antimicrotubule and anti-angiogenesis agent. The structural design of KSS19 completely prevented the isomerization of CA4 its biologically inactive trans-form. Molecular modeling showed that KSS19 bound avidly to the COX-2 active site and colchicine -binding site of tubulin, with similar docking scores of rofecoxib and CA4 respectively. KSS-19 showed potent anti-proliferative activity against a panel of colon cancer cell lines; HT29 cells, which are resistant to CA4 were 100 times more sensitive to KSS19. The hybrid drug potently inhibited the tubulin polymerization in vitro and in cells inducing a G2/M arrest and aberrant mitotic spindles. Both the basal and LPS-activated levels of COX-2 in colon cancer cells were highly suppressed by the KSS-19. The cancer cell migration/invasion was inhibited and accompanied by increased E-cadherin levels and activated NF-kB/Snail pathways in KSS19-treated cells. The drug also curtailed the formation of endothelial tubes in three-dimensional cultures of the HUVE cells at 250 nM, indicating strong anti-angiogenic properties. In subcutaneous HT29 colon cancer xenografts, KSS19, as a single agent (25 mg/kg/day) significantly inhibited the tumor growth and downregulated the intratumoral COX-2, Ki-67, the angiogenesis marker CD31, however, the cleaved caspase-3 was elevated. Collectively, KSS19 represents a rational hybrid drug with clinical relevance to CRC.
Keywords: COX-2; angiogenesis inhibitors; colon cancer; hybrid drugs; microtubule inhibitors.