Drug, targeting ligand, and imaging agent are the three essential components in a nanoparticle-based drug delivery system. However, tremendous batch-to-batch variation of composition and drug content typically accompany the current approaches of building these components together. Herein, we report the design of photoactivatable platinum(IV) (Pt(IV)) amphiphiles containing one or two hydrophilic lactose targeting ligands per hydrophobic Pt(IV) prodrug for an all-in-one precise nanomedicine. Self-assembly of these Pt(IV) amphiphiles results in either micelle or vesicle formation with a fixed Pt/targeting moiety ratio and a constantly high content of Pt. The micelles and vesicles are capable of hepatoma cell-targeting, fluorescence/Pt-based CT imaging and have shown effective anticancer efficacy under laser irradiation in vitro and in vivo. This photoactivatable, active self-targeting, and multimodal theranostic amphiphile strategy shows great potential in constructing precise nanomedicine.
Keywords: imaging; photoactivatable; platinum amphiphile; precise nanomedicine; targeting.