Background: Cardiac repolarization abnormalities in drug-induced and genetic long-QT syndrome may lead to afterdepolarizations and life-threatening ventricular arrhythmias. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) should help to overcome the limitations of animal models based on species differences in repolarization reserve. Here, we compared head-to-head the contribution of IKs (long QT1) and IKr (long QT2) on action potentials (APs) in human left ventricular (LV) tissue and hiPSC-CM-derived engineered heart tissue (EHT).
Methods: APs were measured with sharp microelectrodes in EHT from 3 different control hiPSC-CM lines and in tissue preparations from failing LV.
Results: EHT from hiPSC-CMs showed spontaneous diastolic depolarization and AP generation that were sensitive to low concentrations of ivabradine. IKr block by E-4031 prolonged AP duration at 90% repolarization with similar half-effective concentration in EHT and LV but larger effect size in EHT (+281 versus +110 ms in LV). Although IKr block alone evoked early afterdepolarizations and triggered activity in 50% of EHTs, slow pacing, reduced extracellular K+, and blocking of IKr, IKs, and IK1 were necessary to induce early afterdepolarizations in LV. In accordance with their clinical safety, moxifloxacin and verapamil did not induce early afterdepolarizations in EHT. In both EHT and LV, IKs block by HMR-1556 prolonged AP duration at 90% repolarization slightly in the combined presence of E-4031 and isoprenaline.
Conclusions: EHT from hiPSC-CMs shows a lower repolarization reserve than human LV working myocardium and could thereby serve as a sensitive and specific human-based model for repolarization studies and arrhythmia, similar to Purkinje fibers. In both human LV and EHT, IKs only contributed to repolarization under adrenergic stimulation.
Keywords: E-4031; HMR 1556; action potentials; induced pluripotent stem cell; ivabradine; long-QT syndrome; moxifloxacin.
© 2018 American Heart Association, Inc.