Despite the discovery of key pattern recognition receptors and CD4+ T cell subsets in laboratory mice, there is ongoing discussion of the value of murine models to reflect human disease. Pneumocystis is an AIDS-defining illness, in which risk of infection is inversely correlated with peripheral CD4+ T cell counts. Due to medical advances in the control of HIV, the current epidemiology of Pneumocystis infection is predominantly due to primary human immunodeficiencies and immunosuppressive therapies. To this end, we found that every human genetic immunodeficiency associated with Pneumocystis infection that has been tested in mice recapitulated susceptibility. For example, humans with a loss-of-function IL21R mutation are severely immunocompromised. We found that IL-21R, in addition to CD4+ T cell intrinsic STAT3 signaling, were required for generating protective antifungal class-switched antibody responses, as well as effector T cell-mediated protection. Furthermore, CD4+ T cell intrinsic IL-21R/STAT3 signaling was required for CD4+ T cell effector responses, including IL-22 production. Recombinant IL-22 administration to Il21r-/- mice induced the expression of a fungicidal peptide, cathelicidin antimicrobial peptide, which showed in vitro fungicidal activity. In conclusion, SPF laboratory mice faithfully replicate many aspects of human primary immunodeficiency and provide useful tools to understand the generation and nature of effector CD4+ T cell immunity.
Keywords: Cytokines; Fungal infections; Immunology; Infectious disease; T cells.