Lung metastasis is a major cause of mortality in patients with osteosarcoma (OS). A better understanding of the molecular mechanism of OS lung metastasis may facilitate development of new therapeutic strategies to prevent the metastasis. We have established high- and low-metastatic sublines (LM8-H and LM8-L, respectively) from Dunn OS cell line LM8 by using in vivo image-guided screening. Among the genes whose expression was significantly increased in LM8-H compared to LM8-L, the transcription factor lymphoid enhancer-binding factor 1 (LEF1) was identified as a factor that promotes LM8-H cell extravasation into the lungs. To identify downstream effectors of LEF1 that are involved in OS lung metastasis, 13 genes were selected based on LM8 microarray data and genomewide meta-analysis of a public database for OS patients. Among them, the cytoglobin (Cygb) gene was identified as a key effector in promoting OS extravasation into the lungs. CYGB overexpression increased the extravasation ability of LM8-L cells, whereas knocking out the Cygb gene in LM8-H cells reduced this ability. Our results showed a novel LEF1-CYGB axis in OS lung metastasis and may provide a new way of developing therapeutic strategies to prevent OS lung metastasis.
Keywords: cytoglobin; extravasation; lung metastasis; lymphoid enhancer-binding factor 1; osteosarcoma.
© 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.