Lanthanide-doped nanoparticles are an emerging class of optical sensors, exhibiting sharp emission peaks, high signal-to-noise ratio, photostability, and a ratiometric color response to stress. The same centrosymmetric crystal field environment that allows for high mechanosensitivity in the cubic-phase (α), however, contributes to low upconversion quantum yield (UCQY). In this work, we engineer brighter mechanosensitive upconverters using a core-shell geometry. Sub-25 nm α-NaYF4:Yb,Er cores are shelled with an optically inert surface passivation layer of ∼4.5 nm thickness. Using different shell materials, including NaGdF4, NaYF4, and NaLuF4, we study how compressive to tensile strain influences the nanoparticles' imaging and sensing properties. All core-shell nanoparticles exhibit enhanced UCQY, up to 0.14% at 150 W/cm2, which rivals the efficiency of unshelled hexagonal-phase (β) nanoparticles. Additionally, strain at the core-shell interface can tune mechanosensitivity. In particular, the compressive Gd shell results in the largest color response from yellow-green to orange or, quantitatively, a change in the red to green ratio of 12.2 ± 1.2% per GPa. For all samples, the ratiometric readouts are consistent over three pressure cycles from ambient to 5 GPa. Therefore, heteroepitaxial shelling significantly improves signal brightness without compromising the core's mechano-sensing capabilities and further, promotes core-shell cubic-phase nanoparticles as upcoming in vivo and in situ optical sensors.
Keywords: Heteroepitaxial; core−shell; lanthanides; mechanosensitivity; quantum yield; upconversion.