The phenomenal migratory and differentiation capacity of neural crest cells has been well established across model organisms. While the earliest stages of neural crest development have been investigated in non-mammalian model systems such as Xenopus and Aves, the early specification of this cell population has not been evaluated in mammalian embryos, of which the murine model is the most prevalent. Towards a more comprehensive understanding of mammalian neural crest formation and human comparative studies, we have used the rabbit as a mammalian system for the study of early neural crest specification and development. We examine the expression profile of well-characterized neural crest markers in rabbit embryos across developmental time from early gastrula to later neurula stages, and provide a comparison to markers of migratory neural crest in the chick. Importantly, we apply explant specification assays to address the pivotal question of mammalian neural crest ontogeny, and provide the first evidence that a specified population of neural crest cells exists in the rabbit gastrula prior to the overt expression of neural crest markers. Finally, we demonstrate that FGF signaling is necessary for early rabbit neural crest formation, as SU5402 treatment strongly represses neural crest marker expression in explant assays. This study pioneers the rabbit as a model for neural crest development, and provides the first demonstration of mammalian neural crest specification and the requirement of FGF signaling in this process.
Keywords: AP2α; FGF signaling; Mammalian embryogenesis; Neural crest; Neural plate border; Pax3; Pax7; Rabbit; SU5402; Sox10; Sox9; Specification.
Copyright © 2018. Published by Elsevier Inc.