Rationale and objectives: To assess the implementation of radiation dose monitoring software, create a process for clinical follow-up and documentation of high-dose cases, and quantify the number of patient reported radiation-induced tissue reactions in fluoroscopically guided interventional radiology (IR) and neuro-interventional radiology (NIR) procedures.
Materials and methods: Web-based radiation dose monitoring software was installed at our institution and a process to flag all procedures with reference point air kerma (Ka,r) > 5000 mGy was implemented. The entrance skin dose was estimated and formal reports generated, allowing for physician-initiated clinical follow-up. To evaluate our process, we reviewed all IR and NIR procedures performed at our hospital over a 1-year period. For all procedures with Ka,r > 5000 mGy, retrospective medical chart review was performed to evaluate for patient reported tissue reactions.
Results: Three thousand five hundred eighty-two procedures were performed over the 1-year period. The software successfully transferred dose data on 3363 (93.9%) procedures. One thousand three hundred ninety-three (368 IR and 1025 NIR) procedures were further analyzed after excluding 2189 IR procedures with Ka,r < 2000 mGy. Ten of 368 (2.7%) IR and 52 of 1025 (5.1%) NIR procedures exceeded estimated skin doses of 5000 mGy. All 10 IR cases were abdominal/pelvic trauma angiograms with/without embolization; there were no reported tissue reactions. Of 52 NIR cases, 49 were interventions and 3 were diagnostic angiograms. Five of 49 (10.2%) NIR patients reported skin/hair injuries, all of which were temporary.
Conclusion: Software monitoring and documentation of radiation dose in interventional procedures can be successfully implemented. Radiation-induced tissue reactions are relatively uncommon.
Keywords: Interventional radiology; Quality improvement; Radiation dose; Radiation-induced tissue reactions.
Copyright © 2018 Elsevier Ltd. All rights reserved.