Background: Among the proposals for joint disease mapping, the shared component model has become more popular. Another advance to strengthen inference of disease data is the extension of purely spatial models to include time aspect. We aim to combine the idea of multivariate shared components with spatio-temporal modelling in a joint disease mapping model and apply it for incidence rates of seven prevalent cancers in Iran which together account for approximately 50% of all cancers. Methods: In the proposed model, each component is shared by different subsets of diseases, spatial and temporal trends are considered for each component, and the relative weight of these trends for each component for each relevant disease can be estimated. Results: For esophagus and stomach cancers the Northern provinces was the area of high risk. For colorectal cancer Gilan, Semnan, Fars, Isfahan, Yazd and East-Azerbaijan were the highest risk provinces. For bladder and lung cancer, the northwest were the highest risk area. For prostate and breast cancers, Isfahan, Yazd, Fars, Tehran, Semnan, Mazandaran and Khorasane-Razavi were the highest risk part. The smoking component, shared by esophagus, stomach, bladder and lung, had more effect in Gilan, Mazandaran, Chaharmahal and Bakhtiari, Kohgilouyeh and Boyerahmad, Ardebil and Tehran provinces, in turn. For overweight and obesity component, shared by esophagus, colorectal, prostate and breast cancers the largest effect was found for Tehran, Khorasane-Razavi, Semnan, Yazd, Isfahan, Fars, Mazandaran and Gilan, in turn. For low physical activity component, shared by colorectal and breast cancers North-Khorasan, Ardebil, Golestan, Ilam, Khorasane-Razavi and South-Khorasan had the largest effects, in turn. The smoking component is significantly more important for stomach than for esophagus, bladder and lung. The overweight and obesity had significantly more effect for colorectal than of esophagus cancer. Conclusions: The presented model is a valuable model to model geographical and temporal variation among diseases and has some interesting potential features and benefits over other joint models.
Keywords: Spatial statistics; disease mapping; bayesian modelling; shared component model; Iran; cancer.
Creative Commons Attribution License