We evaluated the tolerance and pathogenesis of foodborne pathogens with a simulated gastro-intestinal tract model that simulates the chemical, physical and biological effects of human digestion process under laboratory conditions. This could be used to study the tolerance, pathogenesis, gut microbiota interaction and vaccine development of foodborne pathogens, so as to contribute to control and treatment of foodborne pathogens. This review introduces the applications of simulated gastro-intestinal tract model tp evaluate foodborne pathogens, which includes in-vitro static gastro-intestinal model, in-vitro dynamic gastro-intestinal model, conventional animal model and humanized animal model. And the concepts and characteristics of all models are described in detail. Also, the shortcomings of existing models are analyzed, and improvements of artificial gastro-intestinal tract model are prospected. In conclusion, this review could provide comprehensive data for promoting the progress of studying tolerance and pathogenesis of foodborne pathogens.
人工模拟胃肠道模型是研究食源性致病菌耐受及致病机理的一种重要工具,其本质是在实验室模拟的条件下,重现人体消化过程中的化学、物理及生物作用,以研究食源性致病菌的耐受性、致病机理、肠道菌群互作及疫苗开发,对食源性致病菌的控制和治疗具有十分重要的意义。文中综述了人工模拟胃肠道模型在食源性致病菌研究中的应用,将现有胃肠道模型系统地划分为体外静态模型、体外动态模型、普通动物模型及人源化动物模型,并详细介绍了各类模型的概念及特性。在此基础之上,进一步分析了现有模型的不足,并对未来人工模拟胃肠道模型的研究方向进行了展望,以期为食源性致病菌耐受及致病机理的研究奠定扎实的研究基础。.
Keywords: animal model; foodborne pathogen; in-vitro model; simulated gastro-intestinal tract model.