The naturally derived small compound Osthole inhibits osteoclastogenesis to prevent ovariectomy-induced bone loss in mice

Menopause. 2018 Dec;25(12):1459-1469. doi: 10.1097/GME.0000000000001150.

Abstract

Objective: This study was to determine the bone protective effects and underlying mechanisms of Osthole (OT) in ovariectomized (OVX) mice. We found that the inhibitory effects of OT on receptor activator of nuclear factor kappa-B ligand (RANKL)-activated osteoclastogenesis are responsible for its bone protective effects in OVX mice.

Methods: Eight-week-old mice were ovariectomized and OT (10 mg/kg/d) was intraperitoneally administrated to OVX mice 7 days after the surgery and were sacrificed at the end of the 3 months. Osteoclasts were generated from primary bone marrow macrophages (BMMs) to investigate the inhibitory effects of OT. The activity of RANKL-activated signaling was simultaneously analyzed in vitro and in vivo using immunohistochemistry, Western blot, and PCR assays.

Results: OT dose dependently inhibited RANKL-mediated osteoclastogenesis in BMM cultures. OT administration attenuated bone loss (mg Ha/cm: 894.68 ± 33.56 vs 748.08 ± 19.51, P < 0.05) in OVX mice. OT inhibits osteoclastogenesis (Oc.N/per view area: 72 ± 4.3 vs 0.8 ± 0.4, P < 0.05) and bone resorption activity (bone resorbed percentages %, 48.56 ± 7.25 vs 3.25 ± 1.37, P < 0.05) from BMMs. Mechanistically, OT inhibited the expressions of nuclear factor of activated T-cells c1 (NFATc1) and c-Fos. Moreover, OT suppressed the expression of RANKL-induced osteoclast marker genes, including matrix metalloproteinase 9 (MMP9), Cathepsin K (Ctsk), tartrate-resistant acid phosphatase (TRAP), and carbonic anhydrase II (Car2).

Conclusions: OT inhibits RANKL-mediated osteoclastogenesis and prevents bone loss in OVX mice. Our findings revealed that OT is a potential new drug for treating postmenopausal osteoporosis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Analysis of Variance
  • Animals
  • Bone Resorption / etiology*
  • Bone Resorption / prevention & control*
  • Cathepsin K / metabolism
  • Cell Survival / drug effects
  • Coumarins / administration & dosage
  • Coumarins / pharmacology*
  • Coumarins / therapeutic use
  • Drug Discovery
  • Female
  • Humans
  • Injections, Intraperitoneal
  • Matrix Metalloproteinase 9 / metabolism
  • Mice
  • Mice, Inbred C57BL
  • NFATC Transcription Factors / metabolism
  • Osteoclasts / drug effects
  • Osteoclasts / physiology
  • Osteogenesis / drug effects*
  • Osteoporosis, Postmenopausal / drug therapy
  • Ovariectomy / adverse effects*
  • Proto-Oncogene Proteins c-fos / metabolism
  • RANK Ligand / antagonists & inhibitors*
  • RANK Ligand / metabolism
  • Signal Transduction / drug effects
  • Tartrate-Resistant Acid Phosphatase / metabolism

Substances

  • Coumarins
  • NFATC Transcription Factors
  • Nfatc1 protein, mouse
  • Proto-Oncogene Proteins c-fos
  • RANK Ligand
  • Tnfsf11 protein, mouse
  • Acp5 protein, mouse
  • Tartrate-Resistant Acid Phosphatase
  • Cathepsin K
  • Ctsk protein, mouse
  • Matrix Metalloproteinase 9
  • Mmp9 protein, mouse
  • osthol