New findings: What is the central question of this study? Does inspiratory resistance breathing improve tolerance to simulated haemorrhage in individuals with elevated internal temperatures? What is the main finding and its importance? The main finding of this study is that inspiratory resistance breathing modestly improves tolerance to a simulated progressive haemorrhagic challenge during heat stress. These findings demonstrate a scenario in which exploitation of the respiratory pump can ameliorate serious conditions related to systemic hypotension.
Abstract: Heat exposure impairs human blood pressure control and markedly reduces tolerance to a simulated haemorrhagic challenge. Inspiratory resistance breathing enhances blood pressure control and improves tolerance during simulated haemorrhage in normothermic individuals. However, it is unknown whether similar improvements occur with this manoeuvre in heat stress conditions. In this study, we tested the hypothesis that inspiratory resistance breathing improves tolerance to simulated haemorrhage in individuals with elevated internal temperatures. On two separate days, eight subjects performed a simulated haemorrhage challenge [lower-body negative pressure (LBNP)] to presyncope after an increase in internal temperature of 1.3 ± 0.1°C. During one trial, subjects breathed through an inspiratory impedance device set at 0 cmH2 O of resistance (Sham), whereas on a subsequent day the device was set at -7 cmH2 O of resistance (ITD). Tolerance was quantified as the cumulative stress index. Subjects were more tolerant to the LBNP challenge during the ITD protocol, as indicated by a > 30% larger cumulative stress index (Sham, 520 ± 306 mmHg min; ITD, 682 ± 324 mmHg min; P < 0.01). These data indicate that inspiratory resistance breathing modestly improves tolerance to a simulated progressive haemorrhagic challenge during heat stress.
Keywords: inspiratory threshold device; lower-body negative pressure; whole-body heating.
© 2018 The Authors. Experimental Physiology © 2018 The Physiological Society.