Purpose: Radiation exposure is a necessary component of minimally invasive spine procedures to augment limited visualization of anatomy. The surgeon's exposure to ionizing radiation is not easily recognizable without a digital dosimeter-something few surgeons have access to. The aim of this study was to identify an easy alternative method that uses the available radiation dose data from the C-arm to accurately predict physician exposure.
Methods: The senior surgeon wore a digital dosimeter during all minimally invasive spine fusion procedures performed over a 12-month period. Patient demographics, procedure information, and radiation exposure throughout the procedure were recorded.
Results: Fifty-five minimally invasive spine fusions utilizing 330 percutaneous screws were included. Average radiation dose was 0.46 Rad/screw to the patient. Average radiation exposure to the surgeon was 1.06 ± 0.71 μSv/screw, with a strong positive correlation (r = 0.77) to patient dose. The coefficient of determination (r2) was 0.5928, meaning almost two-thirds of the variability in radiation exposure to the surgeon is explained by radiation exposure to the patient.
Conclusions: Intra-operative radiation exposure to the patient, which is easily identifiable as a continuously updated fluoroscopic monitor, is a reliable predictor of radiation exposure to the surgeon during percutaneous screw placement in minimally invasive spinal fusion surgery and therefore can provide an estimate of exposure without the use of a dosimeter. With this, a surgeon can better understand the magnitude of their exposure on a case-by-case basis rather than on a quarterly basis, or more likely, not at all. These slides can be retrieved under Electronic Supplementary Material.
Keywords: Imaging; Minimally invasive; Percutaneous pedicle screw; Radiation exposure; Spine.