MicroRNAs are not widely studied in familial Alzheimer's disease cases, whether the microRNA profilings in familial Alzheimer's disease patients are similar to the sporadic AD patients is not known. This study aims to investigate the differential expression of microRNAs (miRNAs) associated with early-onset familial Alzheimer's disease (EO-FAD) in a Chinese family. We performed the gene mutation analysis in a family clinically diagnosed of EO-FAD. Micro-arrays were used to profile the miRNAs in cerebrospinal fluid of 2 affected members, 2 unaffected carriers and 2 mutation negative controls. The clinical presentation confirmed the EO-FAD diagnosis, and a recurrent mutation of the PSEN1 p.G378E was found in the family. The result showed that in the miRNAs expression profile, a total of 166 miRNAs were up-regulated and 3 miRNAs were down-regulated in the affected individuals compared with mutation negative individuals. But after Benjamini Hochberg FDR correction, only 25 miRNAs were significantly up-regulated and no miRNA was down-regulated, the levels of miR-30a-5p, miR-4758-3p and let-7a-3p were elevated significantly. Compared with mutation negative controls, 21 miRNAs were up-regulated and 18 microRNAs were down-regulated in the unaffected mutation carriers, after Benjamini Hochberg FDR correction, miR-345-5p was up-regulated and miR-4795-3p was down-regulated in the unaffected mutation carriers. And there was no difference between the affected members and unaffected mutation carriers. GO database showed that the top biological processes affected by the predicted target genes are nucleic acid binding transcription factor activity and transcription factor activity (sequence-specific DNA binding) (GO:0001071 and GO:0003700). The result of KEGG pathways showed 64 pathways were implicated in the regulatory network. The present study identified the miRNA profiling of Chinese siblings with G378E mutation in the PSEN1. Compared with mutation negative controls, the levels of 25 miRNAs including miR-30a-5p, miR-4758-3p and let-7a-3p were elevated significantly in the affected members, miR-345-5p was up-regulated and miR-4795-3p was down-regulated in the unaffected mutation carriers. Our study showed the microRNA profilings in the cases of a EO-FAD family with PSEN1 p.G378E mutation, but because of the individuals in the family was small, the results in other types of EO-FAD still need further studied.
Keywords: EO-FAD; FOXO signaling pathway; Let-7a-3p; miR-30-5p; miR-4758-3p; microRNA profiling.