Oxidative stress and inflammation are major contributors to diabetes-induced endothelial dysfunction which is the critical first step to the development of diabetic macrovascular complications. Nuclear factor erythroid 2-related factor 2 (NRF2) plays a key role in combating diabetes-induced oxidative stress and inflammation. Sodium butyrate (NaB) is an inhibitor of histone deacetylase (HDAC) and an activator of NRF2. However, NaB's effect on diabetes-induced aortic injury was unknown. It was also not known whether or to what extent NRF2 is required for both self-defense and NaB's protection in the diabetic aorta. Additionally, the mechanism by which NaB activates NRF2 was unclear. Therefore, C57BL/6 Nrf2 knockout (KO) and wild type (WT) mice were induced to diabetes by streptozotocin, and were treated in the presence or absence of NaB, for 20 weeks. The KO diabetic mice developed more severe aortic endothelial oxidative stress, inflammation and dysfunction, as compared with the WT diabetic mice. NaB significantly attenuated these effects in the WT, but not the KO, mice. In high glucose-treated aortic endothelial cells, NaB elevated Nrf2 mRNA and protein without facilitating NRF2 nuclear translocation, an effect distinct from that of sulforaphane. NaB inhibited HDAC activity, and increased occupancy of the transcription factor aryl hydrocarbon receptor and the co-activator P300 at the Nrf2 gene promoter. Further, the P300 inhibitor C646 completely abolished NaB's efficacies. Thus, NRF2 is required for both self-defense and NaB's protection against diabetes-induced aortic endothelial dysfunction. Other findings suggest that P300 mediates the transcriptional activation of Nrf2 by NaB.
Keywords: Aorta; Diabetes; Endothelial dysfunction; Inflammation; Oxidative stress.
Copyright © 2018 Elsevier Inc. All rights reserved.