[Nitrification Activity and Autotrophic Nitrifiers in Long-term Fertilized Acidic Upland Soils]

Huan Jing Ke Xue. 2017 Aug 8;38(8):3473-3482. doi: 10.13227/j.hjkx.201701064.
[Article in Chinese]

Abstract

Soil microcosm incubation, molecular ecology techniques including denaturing gradient gel electrophoresis and Illumina MiSeq high-throughput sequencing, and bioinformatics analysis were carried out to investigate the effect of long-term fertilization with chemical fertilizers (NPK) and organic manure (OM) on soil nitrification activity and the autotrophic nitrifying communities in acidic upland soils. No fertilization soil (CK) was the control. Relationships between soil nitrification activities, autotrophic nitrifying communities, and soil characteristics were further evaluated. Long-term fertilization significantly increased the soil organic carbon and inorganic nitrogen contents. Fertilization with organic manure significantly increased soil pH and total nitrogen contents, but decreased soil C/N. Autotrophic nitrification dominated soil nitrification, and accounted for 73.60%-85.32% of total nitrification. Fertilization significantly increased soil autotrophic nitrification activity and the highest value was observed in the OM soil. During the microcosm incubation, the absolute abundances of amoA genes and the relative abundances of 16S rRNA genes of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in the OM soil significantly increased. The relative abundances of 16S rRNA genes of the AOA greatly increased in both CK and NPK soils. These results suggested the remarkable activity of AOA in the three soils (the predominant population was Nitrososphaera,>99.30%) and implied that AOB was active in the OM soil (the predominant population was Nitrosospira,>99.99%). We also found the activity of nitrite-oxidizing bacteria (NOB) in the OM soil, and the predominant population was Nitrospira (>96.69%). Stepwise regression analysis demonstrated that soil autotrophic nitrification activity was significantly affected by soil total nitrogen content, whereas the abundances of archaeal and bacterial amoA genes were significantly affected by soil organic carbon content and soil pH, respectively. We also found significant positive correlation between the relative abundance of Nitrososphaera and soil nitrate content and a negative correlation between the relative abundance of Nitrosospira and Nitrospira with soil C/N. Overall, our results showed that long-term fertilization greatly increased soil nitrification activity and altered the autotrophic nitrifying communities in acidic upland soils. Soil autotrophic nitrification activity was significantly stimulated by soil total nitrogen content. The Nitrososphaera group played a critical role in nitrification of acidic upland soils. The increased soil pH and decreased soil C/N stimulated the growth of Nitrosospira.

Keywords: Illumina MiSeq sequencing; acidic upland soils; ammonia oxidizers; bioinformatics analysis; fertilization.

MeSH terms

  • Ammonia / metabolism
  • Archaea / classification*
  • Archaea / metabolism
  • Bacteria / classification*
  • Bacteria / metabolism
  • Nitrification*
  • Oxidation-Reduction
  • Phylogeny
  • RNA, Ribosomal, 16S / genetics
  • Soil
  • Soil Microbiology*

Substances

  • RNA, Ribosomal, 16S
  • Soil
  • Ammonia