Fertilizer and water management are two key factors for rice growth. A better understanding of the carbon (C) cycling in paddy soil requires investigation into the input characteristics and distribution dynamics of photosynthesized carbon in rice-soil system. We grew rice (Zhongzao 39) in PVC pots and used the 13 C-CO2 continuous labeling method to quantify the allocation of photosynthesized carbon in rice-soil system under two regimes(Drying-rewetting vs. continuous watering) and N fertilization (250 mg·kg-1vs. no addition). The results showed that nitrogen fertilizer application increased rice shoot biomass and the amount of C and N, but had no significant influence on rice root biomass. Thus, nitrogen fertilizer application decreased rice biomass root/shoot ratio significantly. Drying-rewetting with N fertilizer treatment resulted in higher total C and N amount by 22% and 33%, respectively, in the shoot, and by 36% and 44%, respectively in the root than continuous watering with nitrogen fertilizer treatment. These results indicated that nitrogen fertilizer application promoted the growth of rice shoot. Nitrogen fertilizer application significantly increased the 13 C content in rice shoot by 32%-83% over the control without N addition. Nitrogen fertilizer application also increased the 13 C recovery in rice shoot by 6%-32%, but decreased that in the root by 18%-59%. Pertaining to water effect, drying-rewetting with N application increased the amount of 13 C in rice shoot and root. However, without N addition, the amount and the recovery of 13 C in shoot dropped by 10.3 mg·pot-1 and 12%, respectively, compared with the continuous watering treatment. The root, on the other hand, recorded increases in both the amount and the recovery of 13 C by 1.9 mg·pot-1 and 57%, respectively. Furthermore, the deposition of assimilated C into rhizosphere-soil increased by both the individual and the interactive effects of N fertilizer application and drying-rewetting treatment. Thus, combining N fertilizer and drying-rewetting water management led to more increased allocation and deposition of photosynthesized carbon in soil-rice system compared with combined continuous flooding and N application. This study was able to quantify the partitioning and allocation of rice photosynthesized carbon into different plant and soil pools under different water and N fertilizer treatments, and can serve as a useful guide for better water and nutrient management practices in paddy-rice production that can achieve both sustainable high yield and sequestration of more C within the paddy soil system.
Keywords: 13 C-CO2 continuous labeling; N application; drying-rewetting; rhizodeposition; rice.