The airborne particle-bound elements (Ca, Fe, Al, Mg, K, Na, Zn, Mn, P, Pb, Cu, Sr, Ti, Ba, Cr, Ni, As, Sb, Cd, Co, and V) trapped in room air conditioners' filters (filter dusts) during recirculating indoor air from different types of rooms were analyzed, and the objectives of this study were to assess the potential sources of those elements and their potential health risks via inhalation/ingestion exposure. Main crustal elements such as Ca, Fe, Al, Mg, and K with an average value of 60.6, 17.9, 11.3, 7.58, and 6.90 mg g-1, respectively, are the preponderant elements, and the mean values of main toxic elements were 2230, 344, 508, 85.7, 71.5, 36.0, 8.02, and 16.9 mg kg-1 for Zn, Cu, Pb, Cr, Ni, As, Cd, and Sb, respectively. The enrichment factors indicated the significant enrichment of Cd, Pb, Cr, Cu, Sb, and Zn in the filter dusts. Four potential sources with the contributions of 33.5, 29.1, 22.6, and 14.8%, respectively, were identified by absolute principal component scores-multiple linear regression analysis (APCS-MLR). Enrichment factor and APCS-MLR model reveal the outdoor input of toxic elements. In vitro inhalation and ingestion bioaccessibility of toxic elements showed elemental and in vitro procedure dependence. There are potential carcinogenic risks via ingestion exposure and no non-carcinogenic risks to both children and adults based on bioaccessible contents of toxic elements. This study reveals the potential health risks posed by the particle-bound elements.
Keywords: Bioaccessibility; Enrichment level; Health risk; Indoor air quality; Source identification; Toxic elements.