Circulating natural killer (NK) cells help protect the host from lympho-hematogenous acute viral diseases by rapidly entering draining lymph nodes (dLNs) to curb virus dissemination. Here, we identify a highly choreographed mechanism underlying this process. Using footpad infection with ectromelia virus, a pathogenic DNA virus of mice, we show that TLR9/MyD88 sensing induces NKG2D ligands in virus-infected, skin-derived migratory dendritic cells (mDCs) to induce production of IFN-γ by classical NK cells and other types of group 1 innate lymphoid cells (ILCs) already in dLNs, via NKG2D. Uninfected inflammatory monocytes, also recruited to dLNs by mDCs in a TLR9/MyD88-dependent manner, respond to IFN-γ by secreting CXCL9 for optimal CXCR3-dependent recruitment of circulating NK cells. This work unveils a TLR9/MyD88-dependent mechanism whereby in dLNs, three cell types-mDCs, group 1 ILCs (mostly NK cells), and inflammatory monocytes-coordinate the recruitment of protective circulating NK cells to dLNs.
Keywords: NK cells; dendritic cells; ectromelia virus; innate lymphoid cells; interferon; monocytes; mouse; poxvirus; viral infection.
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.