The dimethyl disulfide (DMDS) adduct method is one of the more effective methods for determining double bond positions of dienoic acid. The DMDS method can be simply used to obtain the characteristic ions in which cleavage occurs between the methylthio group-added double-bond carbons as can be seen in the mass spectrum obtained using gas chromatography/electron ionization-mass spectrometry. In the case of the methylene-interrupted di-cis type and di-trans type dienoic acid, the DMDS addition reaction only occurs at one double-bond position, and cannot occur at the remaining double-bond position due to steric hindrance. As a result, two types of adducts are produced in the addition reaction. However, in the case of the methylene-interrupted mono-trans (mono-cis) type dienoic acid, the DMDS addition reaction only occurs at the cis-double bond. As a result, one type of adduct is produced in the addition reaction. In this report, we investigate the cause of the reaction selectivity by focusing on the addition reaction time.
Keywords: Trans fatty acid; Fatty-acid analysis; GLC (GC) (gas-liquid chromatography); Mass spectrometry.
© 2018 AOCS.