The g-C₃N₄ decorated magnesium ferrite (MgFe₂O₄) porous microspheres composites were successfully obtained via a one-step solvothermal method. The structure and morphology of the as-prepared MgFe₂O₄/g-C₃N₄ composites were characterized by the techniques of X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), thermal gravity and differential scanning calorimeter (TG⁻DSC) and N₂-sorption. The gas sensing properties of the samples were measured and compared with a pure MgFe₂O₄-based sensor. The maximum response of the sensor based on MgFe₂O₄/g-C₃N₄ composites with 10 wt % g-C₃N₄ content to acetone is improved by about 145 times, while the optimum temperature was lowered by 60 °C. Moreover, the sensing mechanism and the reason for improving gas sensing performance were also discussed.
Keywords: MgFe2O4 porous microspheres; acetone; composites; g-C3N4 nanosheet; gas sensing.