Zebrafish is the preferred vertebrate model for high throughput chemical screens to discover modulators of complex biological pathways. We adapted a transgenic zebrafish line, Tg(dusp6:EGFP), which reports on fibroblast growth factor (Fgf)/Ras/Mapk activity, into a quantitative, high-content chemical screen to identify novel Fgf hyperactivators as chemical probes for zebrafish heart development and regeneration. We screened 10,000 compounds from the TimTec ActiProbe library, and identified several structurally distinct classes of molecules that enhanced Fgf/Ras/Mapk signaling. We chose three agents-ST020101, ST011282, and ST006994-for confirmatory and functional studies based on potency, repeatability with repurchased material, favorable whole organism toxicity, and evidence of structure⁻activity relationships. Functional follow-up assays confirmed that all three compounds induced the expression of Fgf target genes during zebrafish embryonic development. Moreover, these compounds increased cardiac progenitor populations by effecting a fate change from endothelial to cardiac progenitors that translated into increased numbers of cardiomyocytes. Interestingly, ST006994 augmented Fgf/Ras/Mapk signaling without increasing Erk phosphorylation, suggesting a molecular mechanism of action downstream of Erk. We posit that the ST006994 pharmacophore could become a unique chemical probe to uncover novel mechanisms of Fgf signaling during heart development and regeneration downstream of the Mapk signaling node.
Keywords: Cognition Network Technology; Fgf signaling; heart development; high-content analysis; high-throughput screening; probe discovery; zebrafish.