Recombinant foot-and-mouth disease viruses were isolated from cells infected with a mixture of temperature-sensitive (ts) mutants belonging to different subtype strains. In order to select for recombination events in many different regions of the genome, crosses were performed between various pairs of mutants, with ts mutations in different regions of the genome. ts+ progeny were analysed by electrofocusing virus-induced proteins and RNase T1 fingerprinting of their RNA. All but 5 out of 43 independent isolates, from nine crosses, proved to have recombinant RNA genomes. Maps of these genomes, based on a knowledge of the locations of the unique oligonucleotides, were constructed. Most could be interpreted as being the products of single genetic cross-overs, although three recombinants were formed by two cross-overs each. Cross-overs in at least twelve distinct regions of the genome were identified. This evidence of a large number of recombination sites suggests that RNA recombination in picornaviruses is a general, as opposed to a site-specific, phenomenon.