R213G polymorphism in SOD3 protects against bleomycin-induced inflammation and attenuates induction of proinflammatory pathways

Physiol Genomics. 2018 Sep 1;50(9):807-816. doi: 10.1152/physiolgenomics.00053.2018. Epub 2018 Jul 13.

Abstract

Extracellular superoxide dismutase (EC-SOD), one of three mammalian SOD isoforms, is the sole extracellular enzymatic defense against superoxide. A known human single nucleotide polymorphism (SNP) in the matrix-binding domain of EC-SOD characterized by an arginine-to-glycine substitution at position 213 (R213G) redistributes EC-SOD from the matrix into extracellular fluids. We previously reported that knock-in mice harboring the human R213G SNP (R213G mice) exhibited enhanced resolution of inflammation with subsequent protection against fibrosis following bleomycin treatment compared with wild-type (WT) littermates. Herein we set out to determine the underlying pathways with RNA-Seq analysis of WT and R213G lungs 7 days post-PBS and bleomycin. RNA-Seq analysis uncovered significant differential gene expression changes induced in WT and R213G strains in response to bleomycin. Ingenuity Pathways Analysis was used to predict differentially regulated up- and downstream processes based on transcriptional changes. Most prominent was the induction of inflammatory and immune responses in WT mice, which were suppressed in the R213G mice. Specifically, PKC signaling in T lymphocytes, IL-6, and NFΚB signaling were opposed in WT mice when compared with R213G. Several upstream regulators such as IFNγ, IRF3, and IKBKG were implicated in the divergent responses between WT and R213G mice. Our data suggest that the redistributed EC-SOD due to the R213G SNP attenuates the dysregulated inflammatory responses observed in WT mice. We speculate that redistributed EC-SOD protects against dysregulated alveolar inflammation via reprogramming of recruited immune cells toward a proresolving state.

Keywords: EC-SOD; R213G, RNA-Seq; SOD3; alveolar injury; bleo; bleomycin; immunity; inflammation.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Bleomycin
  • Female
  • Gene Expression Profiling
  • Gene Expression Regulation
  • Inflammation / chemically induced
  • Inflammation / genetics*
  • Inflammation / prevention & control*
  • Lung / pathology
  • Male
  • Mice, Inbred C57BL
  • Polymorphism, Single Nucleotide / genetics*
  • Reproducibility of Results
  • Superoxide Dismutase / genetics*
  • Transcriptome / genetics

Substances

  • Bleomycin
  • Sod3 protein, mouse
  • Superoxide Dismutase