Inhibition of RhoA and mTORC2/Rictor by Fingolimod (FTY720) induces p21-activated kinase 1, PAK-1 and amplifies podosomes in mouse peritoneal macrophages

Immunobiology. 2018 Nov;223(11):634-647. doi: 10.1016/j.imbio.2018.07.009. Epub 2018 Jul 7.

Abstract

Macrophage functions in the immune response depend on their ability to infiltrate tissues and organs. The penetration between and within the tissues requires degradation of extracellular matrix (ECM), a function performed by the specialized, endopeptidase- and actin filament- rich organelles located at the ventral surface of macrophage, called the podosomes. Podosome formation requires local inhibition of small GTPase RhoA activity, and depends on Rac 1/Rho guanine nucleotide exchange factor 7, β-PIX and its binding partner the p21-activated kinase (PAK-1). The activity of RhoA and Rac 1 is in turn regulated by mTOR/mTORC2 pathway. Here we showed that a fungus metabolite Fingolimod (FTY720, Gilenya), which is clinically approved for the treatment of multiple sclerosis, down-regulates Rictor, which is a signature molecule of mTORC2 and dictates its substrate (actin cytoskeleton) specificity, down-regulates RhoA, up-regulates PAK-1, and causes amplification of podosomes in mouse peritoneal macrophages.

Keywords: Actin; FTY720; Macrophage; Matrix degradation; PAK1; Podosome; Rac-1; RhoA; mTOR; mTORC2.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Actin Cytoskeleton / metabolism
  • Animals
  • Cells, Cultured
  • Extracellular Matrix / metabolism*
  • Female
  • Fingolimod Hydrochloride / pharmacology
  • Macrophages, Peritoneal / physiology*
  • Macrophages, Peritoneal / ultrastructure
  • Mechanistic Target of Rapamycin Complex 2 / metabolism
  • Mice
  • Mice, Inbred C57BL
  • Multiple Sclerosis / immunology*
  • Podosomes / metabolism*
  • Podosomes / ultrastructure
  • Pregnancy
  • Rapamycin-Insensitive Companion of mTOR Protein / metabolism
  • p21-Activated Kinases / metabolism*
  • rac1 GTP-Binding Protein / metabolism*
  • rhoA GTP-Binding Protein / metabolism*

Substances

  • Rapamycin-Insensitive Companion of mTOR Protein
  • Mechanistic Target of Rapamycin Complex 2
  • Pak1 protein, mouse
  • p21-Activated Kinases
  • rac1 GTP-Binding Protein
  • rhoA GTP-Binding Protein
  • Fingolimod Hydrochloride