Pulsed electromagnetic fields (PEMFs) have been proven to enhance in vitro and in vivo osteogenesis with unknown mechanism. Aim of our study was to explore whether RANKL/OPG and Wnt/β-Catenin pathways could be involved in bone response to PEMFs in a setting of postmenopausal osteoporotic women. Forty-three women (mean age 62.8 ± 4.5 yr.) were randomized into two groups. The PEMFs group received PEMFs treatment (50 min treatment session/day, 6 treatment sessions/week, for a total of 25 times), by wearing a specific gilet applied to the trunk and connected to the electromagnetic device (Biosalus, by HSD Srl, Serravalle RSM), while women assigned to control group received sham PEMFs with the same device. BSAP as bone formation and CTX as bone resorption markers, RANKL, OPG, β-Catenin, DKK-1 and sclerostin were obtained at baseline, after 30 and 60 days. In PEMFs group, BSAP levels significantly increased after 30 and 60 days while CTX concentrations decreased at day 60. RANKL levels significantly decreased after 60 days. OPG was not significantly changed, but the RANKL/OPG ratio significantly decreased at day 30. DKK-1 levels decreased, while β-catenin concentrations increased after 30 and 60 days (P < 0.05). No significant changes of calcium, phosphorus, creatinine and sclerostin were detected. In the PEMFs group, at day 30, Δsclerostin was associated with ΔRANKL/OPG ratio (r = -0.5, P = 0.03) and ΔDKK-1 was associated with Δβ-Catenin (r = -0.47, P = 0.02). In women with postmenopausal osteoporosis, our data provide evidence of a PEMFs modulation of RANKL/OPG and Wnt/β-Catenin signaling pathways able to explain the metabolic effects of PEMFs on bone.
Keywords: DKK-1; Osteoporosis; Pulsed electromagnetic field; RANKL/OPG; Sclerostin; β-Catenin.
Copyright © 2018 Elsevier Inc. All rights reserved.