Background: Mineralocorticoid receptor antagonists added to angiotensin converting enzyme inhibitors have shown preclinical efficacy for both skeletal and cardiac muscle outcomes in young sedentary dystrophin-deficient mdx mice also haploinsufficient for utrophin, a Duchenne muscular dystrophy (DMD) model. The mdx genotypic DMD model has mild pathology, making non-curative therapeutic effects difficult to distinguish at baseline. Since the cardiac benefit of mineralocorticoid receptor antagonists has been translated to DMD patients, it is important to optimize potential advantages for skeletal muscle by further defining efficacy parameters.
Objective: We aimed to test whether therapeutic effects of mineralocorticoid receptor antagonists added to angiotensin converting enzyme inhibitors are detectable using three different reported methods of exacerbating the mdx phenotype.
Methods: We tested treatment with lisinopril and the mineralocorticoid receptor antagonist spironolactone in: 10 week-old exercised, 1 year-old sedentary, and 5 month-old isoproterenol treated mdx mice and performed comprehensive functional and histological measurements.
Results: None of the protocols to exacerbate mdx phenotypes resulted in dramatically enhanced pathology and no significant benefit was observed with treatment.
Conclusions: Since endogenous mineralocorticoid aldosterone production from immune cells in dystrophic muscle may explain antagonist efficacy, it is likely that these drugs work optimally during the narrow window of peak inflammation in mdx mice. Exercised and aged mdx mice do not display prolific damage and inflammation, likely explaining the absence of continued efficacy of these drugs. Since inflammation is more prevalent in DMD patients, the therapeutic window for mineralocorticoid receptor antagonists in patients may be longer.
Keywords: Duchenne muscular dystrophy; Mineralocorticoid receptors; lisinopril; mdx mice; spironolactone.