Inter-subunit interactions drive divergent dynamics in mammalian and Plasmodium actin filaments

PLoS Biol. 2018 Jul 16;16(7):e2005345. doi: 10.1371/journal.pbio.2005345. eCollection 2018 Jul.

Abstract

Cell motility is essential for protozoan and metazoan organisms and typically relies on the dynamic turnover of actin filaments. In metazoans, monomeric actin polymerises into usually long and stable filaments, while some protozoans form only short and highly dynamic actin filaments. These different dynamics are partly due to the different sets of actin regulatory proteins and partly due to the sequence of actin itself. Here we probe the interactions of actin subunits within divergent actin filaments using a comparative dynamic molecular model and explore their functions using Plasmodium, the protozoan causing malaria, and mouse melanoma derived B16-F1 cells as model systems. Parasite actin tagged to a fluorescent protein (FP) did not incorporate into mammalian actin filaments, and rabbit actin-FP did not incorporate into parasite actin filaments. However, exchanging the most divergent region of actin subdomain 3 allowed such reciprocal incorporation. The exchange of a single amino acid residue in subdomain 2 (N41H) of Plasmodium actin markedly improved incorporation into mammalian filaments. In the parasite, modification of most subunit-subunit interaction sites was lethal, whereas changes in actin subdomains 1 and 4 reduced efficient parasite motility and hence mosquito organ penetration. The strong penetration defects could be rescued by overexpression of the actin filament regulator coronin. Through these comparative approaches we identified an essential and common contributor, subdomain 3, which drives the differential dynamic behaviour of two highly divergent eukaryotic actins in motile cells.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Actin Cytoskeleton / chemistry
  • Actin Cytoskeleton / metabolism*
  • Actins / chemistry
  • Actins / metabolism
  • Alleles
  • Animals
  • Female
  • Life Cycle Stages
  • Mammals / metabolism*
  • Melanoma, Experimental / metabolism
  • Melanoma, Experimental / pathology
  • Mice, Inbred C57BL
  • Microfilament Proteins / metabolism
  • Mutation / genetics
  • Parasites / growth & development
  • Phenotype
  • Plasmodium falciparum / growth & development
  • Plasmodium falciparum / metabolism*
  • Protein Binding
  • Protein Domains
  • Protein Subunits / chemistry
  • Protein Subunits / metabolism*
  • Rabbits
  • Species Specificity
  • Sporozoites / metabolism

Substances

  • Actins
  • Microfilament Proteins
  • Protein Subunits
  • coronin proteins

Grants and funding

Cluster of Excellence - CellNetworks Postdoctoral Program (EXC81) to RGD. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Innovation Fund FRONTIER (grant number ZUK 49/2 5.2.161) to RGD and RCW. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. European Research Council https://erc.europa.eu/ (grant number StG 281719) to FF. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Human Frontier Science Program http://www.hfsp.org/ (grant number RGY 0066/2016) to FF. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. German Research Foundation (DFG) (SPP 1464) to FF. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. German Academic Exchange Service (DAAD) https://www.daad.de/en/ to HK. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. German Centre for Infection Research (DZIF) to JA. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Klaus Tschira Foundation http://www.klaus-tschira-stiftung.de/ to PN, SKS, and RCW. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Ministry of Science, Research and the Arts Baden-Württemberg (MWK) and the German Research Foundation (DFG) (grant number INST 35/1314-1 FUGG) to RCW. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.