Moxidectin inhibits glioma cell viability by inducing G0/G1 cell cycle arrest and apoptosis

Oncol Rep. 2018 Sep;40(3):1348-1358. doi: 10.3892/or.2018.6561. Epub 2018 Jul 12.

Abstract

Moxidectin (MOX), a broad‑spectrum antiparasitic agent, belongs to the milbemycin family and is similar to avermectins in terms of its chemical structure. Previous research has revealed that milbemycins, including MOX, may potentially function as effective multidrug resistance agents. In the present study, the impact of MOX on the viability of glioma cells was examined by MTT and colony formation assay, and the molecular mechanisms underlying MOX‑mediated glioma cell apoptosis were explored by using flow cytometry and apoptosis rates. The results demonstrated that MOX exerts an inhibitory effect on glioma cell viability and colony formations in vitro and xenograft growth in vivo and is not active against normal cells. Additionally, as shown by western blot assay, it was demonstrated that MOX arrests the cell cycle at the G0/G1 phase by downregulating the expression levels of cyclin‑dependent kinase (CDK)2, CDK4, CDK6, cyclin D1 and cyclin E. Furthermore, it was revealed that MOX is able to induce cell apoptosis by increasing the Bcl‑2‑associated X protein/B‑cell lymphoma 2 ratio and activating the caspase‑3/‑9 cascade. In conclusion, these results suggest that MOX may inhibit the viability of glioma cells by inducing cell apoptosis and cell cycle arrest, and may be able to function as a potent and promising agent in the treatment of glioma.

MeSH terms

  • Animals
  • Apoptosis / drug effects*
  • Brain Neoplasms / drug therapy
  • Brain Neoplasms / metabolism
  • Brain Neoplasms / pathology*
  • Cell Cycle Checkpoints / drug effects*
  • Cell Proliferation / drug effects
  • Female
  • G1 Phase Cell Cycle Checkpoints / drug effects*
  • Glioma / drug therapy
  • Glioma / metabolism
  • Glioma / pathology*
  • Humans
  • Insecticides / pharmacology
  • Macrolides / pharmacology*
  • Mice
  • Mice, Inbred BALB C
  • Mice, Nude
  • Resting Phase, Cell Cycle / drug effects*
  • Tumor Cells, Cultured
  • Xenograft Model Antitumor Assays

Substances

  • Insecticides
  • Macrolides
  • moxidectin