Thirty-two Collies were used to determine the impact of ABCB1 genotype and phenotype on the plasma pharmacokinetics of fexofenadine's (Fex) R- and S-enantiomers after bolus Fex administration, as human P-gp exhibits stereoselectivity. Each Collie's ABCB1 genotype and ivermectin (IVM) sensitivity (phenotype) was determined prior to study enrolment. Wild-type (WT) Collies had lower plasma concentrations of the individual enantiomers as compared to heterozygous IVM nonsensitive (HNS), heterozygous IVM-sensitive (HS) and homozygous mutant (MUT) Collies. Based on pairwise statistical comparison, WT Collies had statistically significantly lower (AUC0-last ) and peak (Cmax ) values compared to HS, HNS and MUT Collies. Tmax was not influenced by genotype/phenotype. Inter-individual variability in PK metrics tended to be largest for WT Collies. Although the influence of genotype/phenotype on Fex PK occurred with the individual isomers, impairment of S-Fex absorption, particularly in the MUT dogs, exceeded that associated with R-Fex. Since Fex elimination occurs primarily via biliary excretion via a transporter other than P-glycoprotein, and based upon our understanding of Fex absorption kinetics, we attributed these differences primarily to the absorption portion of the profile. These differences are expressed in a stereo-specific manner. These results demonstrate the potential negative impact on estimates of drug effectiveness and toxicity, especially for P-gp substrates that do not exhibit Central Nervous System toxicities.
Keywords: Collies; P-glycoprotein; enantiomers; fexofenadine.
Published 2018. This article is a U.S. Government work and is in the public domain in the USA.