Musculoskeletal Outcomes from Chronic High-Speed, High-Impulse Resistance Exercise

Int J Sports Med. 2018 Oct;39(10):791-801. doi: 10.1055/s-0044-101455. Epub 2018 Jul 19.

Abstract

While bones and muscles adapt to mechanical loading, it appears that very specific types of stimuli must be applied to achieve osteogenesis. Our study assessed musculoskeletal outcomes to 30 training sessions on an Inertial Exercise Trainer (Newnan, GA). Subjects (n=13) performed workouts with their left leg, while their right served as an untreated control. Workouts entailed three 60-s sets each of knee extension, hip extension and calf press exercises, separated by 90-s rests. Before and after the 30 training sessions, subjects underwent strength tests (knee and ankle extensors of both legs), DEXA scans (hip, knee and ankles of both legs), and blood draws. After 30 training sessions 2×2 ANOVAs showed left leg peak torques rose significantly. 2×2 ANCOVAs, with bone scan area as a covariate, showed significant left leg calcaneal bone mineral content (+29%) and density (+33%) increases after 30 training sessions. A significant decline in C-terminal telopeptides of type I collagen, a blood marker of bone resorption, also occurred after 30 training sessions. The Inertial Exercise Trainer's large volume of training session repetitions elicited high peak force, peak acceleration and impulses that likely provided a mechanical loading stimulus that evoked calcaneal accretion.

MeSH terms

  • Absorptiometry, Photon
  • Adolescent
  • Adult
  • Biomarkers / blood
  • Bone Density
  • Bone Resorption
  • Diet
  • Female
  • Hip / physiology
  • Humans
  • Knee / physiology
  • Leg / physiology
  • Male
  • Muscle Strength / physiology*
  • Osteogenesis / physiology*
  • Resistance Training / methods*
  • Young Adult

Substances

  • Biomarkers