Delayed S-cone sensitivity losses following the onset of intense yellow backgrounds linked to the lifetime of a photobleaching product?

J Vis. 2018 Jun 1;18(6):12. doi: 10.1167/18.6.12.

Abstract

Thirty years ago, Mollon, Stockman, & Polden (1987) reported that after the onset of intense yellow 581-nm backgrounds, S-cone threshold rose unexpectedly for several seconds before recovering to the light-adapted steady-state value-an effect they called: "transient-tritanopia of the second kind" (TT2). Given that 581-nm lights have little direct effect on S-cones, TT2 must arise indirectly from the backgrounds' effects on the L- and M-cones. We attribute the phenomenon to the action of an unknown L- and M-cone photobleaching product, X, which acts at their outputs like an "equivalent" background light that then inhibits S-cones at a cone-opponent, second-site. The time-course of TT2 is similar in form to the lifetime of X in a two-stage, first-order biochemical reaction A→X→C with successive best-fitting time-constants of 3.09 ± 0.35 and 7.73 ± 0.70 s. Alternatively, with an additional slowly recovering exponential "restoring-force" with a best-fitting time-constant 23.94 ± 1.42 s, the two-stage best-fitting time-constants become 4.15 ± 0.62 and 6.79 ± 1.00 s. Because the time-constants are roughly independent of the background illumination, and thus the rate of photoisomerization, A→X is likely to be a reaction subsidiary to the retinoid cycle, perhaps acting as a buffer when the bleaching rate is too high. X seems to be logarithmically related to S-cone threshold, which may result from the logarithmic cone-opponent, second-site response compression after multiplicative first-site adaptation. The restoring-force may be the same cone-opponent force that sets the rate of S-cone recovery following the unusual threshold increase following the offset of dimmer yellow backgrounds, an effect known as "transient-tritanopia" (TT1).

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptation, Ocular / physiology
  • Color Perception / physiology*
  • Cone Opsins / metabolism*
  • Humans
  • Models, Theoretical
  • Photic Stimulation
  • Photobleaching*
  • Retinal Cone Photoreceptor Cells / physiology*
  • Retinoids / metabolism

Substances

  • Cone Opsins
  • Retinoids