Orientation-specific learning of the prior assumption for 3D slant perception

Sci Rep. 2018 Jul 23;8(1):11063. doi: 10.1038/s41598-018-29361-2.

Abstract

We usually interpret a trapezoidal image on our retina as a slanted rectangle rather than a frontoparallel trapezoid, because we use a statistical assumption (i.e. rectangles are more common than trapezoids), called a 'prior', for recovering the 3D world from ambiguous 2D images. Here we report that the shape prior for recovering 3D slant can be updated differently depending on the slant axis orientation (horizontal vs. vertical). The participants were exposed to a variety of trapezoidal images surrounded by a stereoscopic reference plane. The perspective transformation of the images was interpreted as 2D shape, rather than 3D slant because the surrounding plane enhanced disparity. We found that, after continuous exposure to such images, the participants relied less on the shape information for recovering 3D slant, suggesting the update of priors via experience (i.e., rectangles are less common than trapezoids). Importantly, the learning effect was context (slant-axis) specific although partially transferred across contexts; the training with horizontal-axis slant reduced the reliance on perspective even in vertical-axis slant estimation but not vice versa. The results suggest that context-specific training is vital to update the prior for the horizontal-axis slant, whereas it is not required to update the prior for a vertical-axis slant.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Depth Perception / physiology*
  • Humans
  • Models, Theoretical
  • Orientation, Spatial / physiology*
  • Pattern Recognition, Visual / physiology
  • Vision Disparity / physiology*