Prenatal drug exposure altered cognitive function in individuals, and may also impact their offspring's susceptibility to cognitive impairment. The high incidence of methamphetamine (METH) abuse among adolescents and women of childbearing age elevates the importance to determine the influence of maternal METH exposure on cognitive functions in the descendants. We hypothesized that maternal METH exposure affects cognitive behavior in offspring mice by disrupting gene expression associated with neural development. Here, female C57BL/6 mice were exposed to intermittent escalating doses of METH or saline from adolescence to adulthood, and then continued through pregnancy. Interestingly, male but not female offspring exhibited impaired short-term recognition memory and long-term spatial memory retention in novel object recognition and Morris water maze test respectively. Additionally, maternal METH exposure altered neurodevelopmental genes in both male and female offspring, and 12 differentially expressed genes between male and female were observed in the HPC and NAc regions. These differentially expressed genes are involved in neurogenesis, axon guidance, neuron migration and synapse of neural development circuits. Our observations suggest that maternal METH exposure induced differential expression patterns of neurodevelopment-related genes in the HPC and NAc of male and female mice, which may underlie the different cognitive behavior phenotypes in both genders.
Keywords: Cognitive behavior; Gender differences; Maternal exposure; Methamphetamine; Neurodevelopment.
Copyright © 2018 Elsevier Ltd. All rights reserved.