The human erythrocyte insulin-like growth factor I receptor: characterization and demonstration of ligand-stimulated autophosphorylation

J Clin Endocrinol Metab. 1986 Apr;62(4):692-9. doi: 10.1210/jcem-62-4-692.

Abstract

To characterize the insulin-like growth factor I (IGF-I) receptor on human erythrocytes, cells were purified from peripheral blood by Ficoll-Hypaque gradient centrifugation and incubated with [125I]IGF-I. Specific binding was maximal at pH 8.0 after 24 h at 4 C and increased linearly with cell number to 3.9 +/- 0.2% (+/- SEM) for 3.0 X 10(9) cells/ml. The Scatchard plot of the binding data was linear, with 7 fmol [125I]IGF-I bound/10(9) cells and an affinity constant (K) of 1.8 X 10(9) M-1. Unlabeled IGF-I inhibited tracer binding half-maximally at 6 ng/ml. Multiplication-stimulating activity (or rat IGF-II) was 40% as potent (ED50, 15 ng/ml), whereas insulin and proinsulin were 30- to 500-fold less potent. A monoclonal antibody to the IGF-I receptor (alpha IR-3) inhibited IGF-I binding by 50% at a 1:1000 dilution and by 80% at a 1:250 dilution. Insulin binding was unaffected by the same dilutions. IGF-I receptor phosphorylation was studied in erythrocyte ghosts prepared by hypotonic lysis and solubilized in 1% Triton. The extract was preincubated with and without 100 ng/ml IGF-I or porcine insulin and incubated with [gamma-32P]ATP in the presence of Mn2+, and the receptor was identified by immunoprecipitation with alpha IR-3 antibody and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. IGF-I stimulated 4-fold the incorporation of 32P into a protein of 95,000 mol wt, which was immunoprecipitated by alpha IR-3; insulin produced a 2-fold stimulation of this protein. This protein corresponds to the beta-subunit of the IGF-I receptor. These data demonstrate that human erythrocytes have specific receptors for IGF-I, and that this IGF-I receptor, like the insulin receptor, undergoes ligand-stimulated autophosphorylation. Thus, analysis of erythrocyte IGF-I binding and receptor phosphorylation may be useful tools for the study of patients with a variety of growth disorders.

MeSH terms

  • Adult
  • Binding, Competitive
  • Erythrocytes / metabolism*
  • Humans
  • Insulin-Like Growth Factor I / blood
  • Phosphorylation
  • Protein Kinases / blood
  • Receptor, Insulin / metabolism
  • Receptors, Cell Surface / metabolism*
  • Receptors, Somatomedin
  • Solubility

Substances

  • Receptors, Cell Surface
  • Receptors, Somatomedin
  • Insulin-Like Growth Factor I
  • Protein Kinases
  • Receptor, Insulin