The changes in arterial plasma concentrations of immunoreactive leukotriene B (LTB) were compared after antigen challenge of two groups of sensitized, mepyramine-treated, and mechanically ventilated guinea pigs, one fed a diet enriched with fish oil and the other a control diet enriched with beef tallow. The lung tissue of animals fed a fish oil-enriched diet (FFD) for 9 to 10 wk incorporated eicosapentaenoic acid (EPA) and docosahexaenoic acid to constitute 8 to 9% of total fatty acid content, whereas these alternative fatty acids constituted less than 1% of the total fatty acid content of the lung tissue of animals on a beef tallow-supplemented diet (BFD). The maximum increase after antigen challenge in immunoreactive LTB4 from 0.16 +/- 0.04 ng/ml to 0.84 +/- 0.25 ng/ml in BFD animals and from 0.47 +/- 0.11 to 5.1 +/- 1.4 ng/ml immunoreactive LTB (LTB4 and LTB5) in FFD animals was significant (p less than 0.02) for each. Furthermore, the increase in total immunoreactive LTB in mepyramine-treated FFD animals was significantly greater than the increase in LTB4 in mepyramine-treated BFD guinea pigs at 2 to 8 min after antigen challenge (p less than 0.05). Resolution of arterial plasma immunoreactive LTB from pooled samples by reverse-phase high-performance liquid chromatography demonstrated that the sum of LTB4 and LTB5 in FFD animals exceeded that of LTB4 in BFD animals and that the quantity of LTB4 in the FFD animals was at least as great as that in the BFD animals during anaphylaxis. The products eluting at the retention times of LTB4 and LTB5 exhibited the chemotactic activity of their respective synthetic standards. The combination of indomethacin and mepyramine markedly augmented the antigen-induced increase in arterial plasma immunoreactive LTB4 concentrations in BFD animals, but had no effect on immunoreactive LTB levels in FFD animals. Limited in vivo measurements showing a lesser increase of plasma immunoreactive thromboxane B2 in the FFD relative to the BFD animals during anaphylaxis and ex vivo measurements showing a decreased LTB4-stimulated (cyclooxygenase product-dependent) contractile response of pulmonary parenchymal strips from the FFD relative to the BFD animals provide evidence for blockade in the cyclooxygenase pathway in the FFD animals. The measurements of arterial plasma LTB indicate that indomethacin treatment alone, which inhibits cyclooxygenase activity, and FFD treatment each augment the metabolism of arachidonic acid by the 5-lipoxygenase pathway in animals pretreated with mepyramine.(ABSTRACT TRUNCATED AT 400 WORDS)