Although abundant works have been developed in mussel-inspired antifouling coatings, most of them suffer from poor chemical stability, especially in a strongly alkaline environment. Herein, we report a robust one-step mussel-inspired method to construct a highly chemical stable and excellent antibiofouling membrane surface coating with a highly efficient codeposition of polydopamine (PDA) with zwitterionic polymer. In the study, PDA and polyethylenimine-quaternized derivative (PEI-S) are codeposited on the surface of poly(ether sulfone) (PES) ultrafiltration membrane in water at room temperature. In contrast to individual PDA coating, the obtained PDA/PEI-S coating exhibits excellent chemical stability even in a strongly alkaline environment owing to the cross-linking and unexpected cation-π interaction between the PEI-S and PDA. Thanks to the introduction of PEI-S, systematic protein adsorption tests and bacteria adhesion experiments demonstrated that the surfaces could prevent bovine serum fibrinogen and lysozyme adsorption and could reduce Gram-positive bacteria S. aureus and Gram-negative bacteria E. coli adhesion. Benefiting from the versatile functionality of PDA, the proposed strategy is not limited to PES membrane surface but also others such as poly(ethylene terephthalate) sheets and commercial polypropylene microfiltration membranes. Overall, this work enriches the exploration of a remarkable coating with enhanced stability and excellent antifouling property via a facile, robust, and material-independent approach to modifying the membrane surface.