Frequency-dependent feedback constrains plant community coexistence

Nat Ecol Evol. 2018 Sep;2(9):1403-1407. doi: 10.1038/s41559-018-0622-3. Epub 2018 Jul 30.

Abstract

Ecological theory suggests that coexistence of many species within communities requires negative frequency-dependent feedbacks to prevent exclusion of the least fit species. For plant communities, empirical evidence of negative frequency dependence driving species coexistence and diversity patterns is rapidly accumulating, but connecting these findings to theory has been difficult as corresponding theoretical frameworks only consider small numbers of species. Here, we show how frequency-dependent feedback constrains community coexistence, regardless of the number of species and inherent fitness inequalities between them. Any interaction network can be characterized by a single community interaction coefficient, IC, which determines whether community-level feedback is positive or negative. Negative feedback is a necessary (but not sufficient) condition for persistence of the entire community. Even in cases where the coexistence equilibrium state cannot recover from perturbations, IC < 0 can enable species persistence via cyclic succession. The number of coexisting species is predicted to increase with the average strength of negative feedback. This prediction is supported by patterns of tree species diversity in more than 200,000 deciduous forest plots in the eastern United States, which can be reproduced in simulations that span the observed range of community feedback. By providing a quantitative metric for the strength of negative feedback needed for coexistence, we can now integrate theory and empirical data to test whether observed feedback-diversity correlations are strong enough to infer causality.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Ecosystem*
  • Models, Theoretical
  • Plants*
  • Soil

Substances

  • Soil