Wool is composed primarily of proteins belonging to the keratin family. These include the keratins and keratin-associated proteins (KAPs) that are responsible for the structural and mechanical properties of wool fibre. Although all human keratin and KAP genes have been annotated, many of their ovine counterparts remain unknown and even less is known about their genomic organisation. The aim of this study was to use a combinatory approach including comprehensive cDNA and de novo genomic sequencing to identify ovine keratin and KAP genes and their genomic organisation and to validate the keratins and KAPs involved in wool production using ovine expressed sequence tag (EST) libraries and proteomics. The number of genes and their genomic organisation are generally conserved between sheep, cattle and human, despite some unique features in the sheep. Validation by protein mass spectrometry identified multiple keratins (types I and II), epithelial keratins and KAPs. However, 15 EST-derived genes, including one type II keratin and 14 KAPs, were identified in the sheep genome that were not present in the NCBI gene set, providing a significant increase in the number of keratin genes mapped on the sheep genome.
Keywords: expressed sequence tags; proteomics; wool.
© 2018 Stichting International Foundation for Animal Genetics.