Umbilical cord mesenchymal stem cells (UC-MSCs) exert strong immunomodulatory effects and can repair organs. However, their roles in radiation injury remain unclear. We show that in tree shrews with acute radiation injury, injected UC-MSCs significantly improved survival rates, reduced lung inflammation and apoptosis, prevented pulmonary fibrotic processes, recovered hematopoiesis, and increased blood counts. A protein microarray analysis showed that serum levels of the anti-inflammatory cytokines IL-10 and IL-13 and the growth factors BMP-5, BMP-7, HGF, insulin, NT-4, VEGFR3, and SCF were significantly higher, while those of the inflammatory cytokines IL-2, TIMP-2, TNF-α, IFN-γ, IL-1ra, and IL-8 and the fibrosis-related factors PDGF-BB, PDGF-AA, TGF-β1, IGFBP-2, and IGFBP-4 were significantly lower in UC-MSC-injected animals. A transcriptome analysis of PBMCs showed that the mRNA expression of C1q was upregulated, while that of HLA-DP was downregulated after UC-MSC injection. These results confirm the immunohistochemistry results. eGFP-labeled UC-MSCs were traced in vivo and found in the heart, liver, spleen, lungs, kidneys, thymus, small intestine and bone marrow. Our findings suggest that UC-MSC transplantation may be a novel therapeutic approach for treating acute radiation injury.
Keywords: C1q; HLA-DP; Radio-pulmonary lesion; Tissue repair; Umbilical cord mesenchymal stem cells.