Ticks are obligate hematophagous arthropod ectoparasites that transmit pathogens responsible for a growing number of tick-borne diseases (TBDs) throughout the world. Vaccines have been shown to be the most efficient, cost-effective, and environmentally friendly approach for the control of ticks and the prevention of TBDs. Although at its infancy, interactomics has shown the possibilities that the knowledge of the interactome offers in understanding tick biology and the molecular mechanisms involved in pathogen infection and transmission. Furthermore, interactomics has provided information for the identification of candidate vaccine protective antigens. Areas covered: In this special report, we review the different approaches used for the study of protein-protein physical and functional interactions, and summarize the application of interactomics to the characterization of tick biology and tick-host-pathogen interactions, and the possibilities that offers to vaccine development for the control of ticks and TBDs. Expert commentary: The combination of interacting proteins in antigen formulations may increase vaccine efficacy. In the near future, the combination of interactomics with other omics approaches such as transcriptomics, proteomics, metabolomics, and regulomics together with intelligent Big Data analytic techniques will improve the high throughput discovery and characterization of vaccine protective antigens for the prevention and control of TBDs.
Keywords: Tick; interactomics; tick-borne diseases; vaccine.