Influence of temperature and pearl rotation on biomineralization in the pearl oyster, Pinctada margaritifera

J Exp Biol. 2018 Sep 21;221(Pt 18):jeb186858. doi: 10.1242/jeb.186858.

Abstract

The objective of this study was to observe the impact of temperature on pearl formation using an integrative approach describing the rotation of the pearls, the rate of nacre deposition, the thickness of the aragonite tablets and the biomineralizing potential of the pearl sac tissue though the expression level of some key genes. Fifty pearl oysters were grafted with magnetized nuclei to allow the rotation of the pearls to be described. Four months later, 32 of these pearl oysters were exposed to four temperatures (22, 26, 30 and 34°C) for 2 weeks. Results showed that the rotation speed differed according to the movement direction: pearls with axial movement had a significantly higher rotation speed than those with random movement. Pearl growth rate was influenced by temperature, with a maximum between 26 and 30°C but almost no growth at 34°C. Lastly, among the nine genes implicated in the biomineralization process, only Pmarg-Pif177 expression was significantly modified by temperature. These results showed that the rotation speed of the pearls was not linked to pearl growth or to the expression profiles of biomineralizing genes targeted in this study. On the basis of our results, we consider that pearl rotation is a more complex process than formerly thought. Mechanisms involved could include a strong environmental forcing in immediate proximity to the pearl. Another implication of our findings is that, in the context of ocean warming, pearl growth and quality can be expected to decrease in pearl oysters exposed to temperatures above 30°C.

Keywords: Gene expression; Magnetometer; Nacre growth; Nacre thickness; Pmarg-Pif177; Rotation speed.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biomineralization*
  • Calcification, Physiologic
  • Nacre / physiology*
  • Pinctada / genetics
  • Pinctada / physiology*
  • Rotation
  • Temperature

Substances

  • Nacre