Background: While it has been challenging to establish prostate cancer patient-derived xenografts (PDXs), with a take rate of 10-40% and long latency time, multiple groups throughout the world have developed methods for the successful establishment of serially transplantable human prostate cancer PDXs using a variety of immune deficient mice. In 2014, the Movember Foundation launched a Global Action Plan 1 (GAP1) project to support an international collaborative prostate cancer PDX program involving eleven groups. Between these Movember consortium members, a total of 98 authenticated human prostate cancer PDXs were available for characterization. Eighty three of these were derived directly from patient material, and 15 were derived as variants of patient-derived material via serial passage in androgen deprived hosts. A major goal of the Movember GAP1 PDX project was to provide the prostate cancer research community with a summary of both the basic characteristics of the 98 available authenticated serially transplantable human prostate cancer PDX models and the appropriate contact information for collaborations. Herein, we report a summary of these PDX models.
Methods: PDX models were established in immunocompromised mice via subcutaneous or subrenal-capsule implantation. Dual-label species (ie, human vs mouse) specific centromere and telomere Fluorescence In Situ Hybridization (FISH) and immuno-histochemical (IHC) staining of tissue microarrays (TMAs) containing replicates of the PDX models were used for characterization of expression of a number of phenotypic markers important for prostate cancer including AR (assessed by IHC and FISH), Ki67, vimentin, RB1, P-Akt, chromogranin A (CgA), p53, ERG, PTEN, PSMA, and epithelial cytokeratins.
Results: Within this series of PDX models, the full spectrum of clinical disease stages is represented, including androgen-sensitive and castration-resistant primary and metastatic prostate adenocarcinomas as well as prostate carcinomas with neuroendocrine differentiation. The annotated clinical characteristics of these PDXs were correlated with their marker expression profile.
Conclusion: Our results demonstrate the clinical relevance of this series of PDXs as a platform for both basic science studies and therapeutic discovery/drug development. The present report provides the prostate cancer community with a summary of the basic characteristics and a contact information for collaborations using these models.
Keywords: PDX; patient-derived xenograft; prostate cancer.
© 2018 Wiley Periodicals, Inc.