Background & aims: Infection with Tropheryma whipplei has a range of effects-some patients can be chronic carriers without developing any symptoms, whereas others can develop systemic Whipple disease, characterized by a lack a protective inflammatory immune response. Alterations in HLA-G function have been associated with several diseases. We investigated the role of HLA-G during T whipplei infection.
Methods: Sera, total RNA, and genomic DNA were collected from peripheral blood from 22 patients with classic Whipple's disease, 19 patients with localized T whipplei infections, and 21 asymptomatic carriers. Levels of soluble HLA-G in sera were measured by enzyme-linked immuosorbent assay, and expressions of HLA-G and its isoforms were monitored by real-time polymerase chain reaction. HLA-G alleles were identified and compared with a population of voluntary bone marrow donors. Additionally, monocytes from healthy subjects were stimulated with T whipplei, and HLA-G expression was monitored by real-time polymerase chain reaction and flow cytometry. Bacterial replication was assessed by polymerase chain reaction in the presence of HLA-G or inhibitor of tumor necrosis factor (TNF) (etanercept).
Results: HLA-G mRNAs and levels of soluble HLA-G were significantly increased in sera from patients with chronic T whipplei infection compared with sera from asymptomatic carriers and control individuals. No specific HLA-G haplotypes were associated with disease or T whipplei infection. However, T whipplei infection of monocytes induced expression of HLA-G, which was associated with reduced secretion of TNF compared with noninfected monocytes. A neutralizing antibody against HLA-G increased TNF secretion by monocytes in response to T whipplei, and a TNF inhibitor promoted bacteria replication.
Conclusions: Levels of HLA-G are increased in sera from patients with T whipplei tissue infections, associated with reduced production of TNF by monocytes. This might promote bacteria colonization in patients.
Keywords: Cytokine; Immune Suppression; Inflammation; Tolerance Induction.
Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.