Ultrasound-assisted synthesis of NiFe- layered double hydroxides as efficient electrode materials in supercapacitors

Ultrason Sonochem. 2018 Nov:48:199-206. doi: 10.1016/j.ultsonch.2018.05.035. Epub 2018 May 29.

Abstract

Under ultrasound irradiation, NiFe-layered double hydroxide (NiFe-LDH) nanostructures with three molar ratios and three dissimilar reaction times were prepared. The powder X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and Fourier transform infrared spectroscopy (FT-IR) were employed to characterize the synthesized nanomaterials. Using a sonochemichal route, various morphologies of the NiFe-LDH nanostructures without any impurity and variations in the structure were produced. During the optimization process, it was found that sonication time and reagent concentration in a fixed irradiation frequency can affect the size and the morphology of the produced nanostructures. Under ultrasound irradiation, non-aggregated particles with uniform, spherical morphology were obtained with molar ratios of 4:1 (Ni:Fe) with 45 W at 180 min. The NiFe-LDH samples were observed to be supercapacitor under a 6 M KOH solution. When morphologically-controlled NiFe-LDH samples were used, the pseudo-capacitive behavior of the nanostructures was tuned. After 3 h of ultrasonic irradiation, the optimized sample (NiFe-LDH spherical nanostructures with 4:1 M ratio) had a high value of specific capacitance (168F g-1).

Keywords: NiFe- layered double hydroxide; Sonochemistry route; Spherical particles; Supercapacitor; Ultrasonic irradiation.