Nitrogen is an essential, often limiting, factor in plant growth and development. To regulate growth under limited nitrogen supply, plants sense the internal and external nitrogen status, and coordinate various metabolic processes and developmental programs accordingly. This coordination requires the transmission of various signaling molecules that move across the entire plant. Cytokinins, phytohormones derived from adenine and synthesized in various parts of the plant, are considered major local and long-distance messengers. Cytokinin metabolism and signaling are closely associated with nitrogen availability. They are systemically transported via the vasculature from plant roots to shoots, and vice versa, thereby coordinating shoot and root development. Tight linkage exists between the nitrogen signaling network and cytokinins during diverse developmental and physiological processes. However, the cytokinin-nitrogen interactions and the communication systems involved in sensing rhizospheric nitrogen status and in regulating canopy development remain obscure. We review current knowledge on cytokinin biosynthesis, transport and signaling, nitrogen acquisition, metabolism and signaling, and their interactive roles in regulating root-shoot morphological and physiological characteristics. We also discuss the role of spatio-temporal regulation of cytokinins in enhancing beneficial crop traits of yield and nitrogen use efficiency.
Keywords: Cytokinin transport; Long-distance signaling; Nitrogen status; Root - shoot relationship; Source-sink relationship.
Copyright © 2018 Elsevier B.V. All rights reserved.