Density functional theory (DFT) calculations have been performed to explore the gas-phase hydrolysis reaction of mononuclear thorium halide clusters ThX4 (X = F, Cl). We have found that the hydrolysis of ThCl4 is easier than that of ThF4. Furthermore, their hydrolysis reactions favor pathways of direct dehydration of Th(OH)4 instead of further hydrolysis of ThOX2. There are some differences between the hydrolysis of ThCl4 and that of MCl4 (M = Ti, Zr and Hf). The X-HY (X = F, Cl; Y = F, Cl and OH) hydrogen bonds play an important role in the hydrogen transfer process of the hydrolysis reaction. The differences in the steric effects and bonding may be important factors that are related to the disparities in the hydrolysis of the above-mentioned metal halides.